Hydrophobic Environment of Cysteine Residues in Pig Brain S-100 Proteins

Sadayuki Matsuda

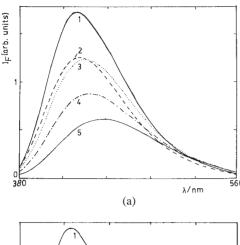
Hokkaido University of Education at Asahikawa, 9, Hokumon-cho, Asahikawa, Hokkaido 070-0825

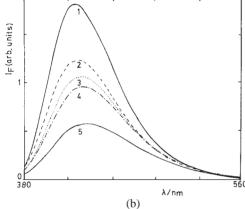
Received June 12, 2007; E-mail: matsuda@asa.hokkyodai.ac.jp

The effects of metal ion binding to pig brain S-100 proteins on the hydrophobicity of their cysteine (Cys) residues were examined using the fluorescent thiol reagent, N-(1-ani-linonaphthyl-4)maleimide (ANM). The hydrophobicity order was Ca^{2+}/S -100 $< K^+/S$ -100 $< Mg^{2+}/S$ -100 < S-100 $< Zn^{2+}/S$ -100.

Pig brain S-100 proteins are Ca²⁺-binding proteins, which have three isoforms (S-100a, S-100a', and S-100b) with a pair of $\alpha\beta$, $\alpha'\beta$, and $\beta\beta$ subunits, respectively.^{1,2} The chemical properties of S-100a and S-100a' are very similar, so a mixture of S-100a and S-100a', denoted as S-100a.a', can be practically regarded as homogeneous; whereas those of S-100b are substantially different from the former two.³ The S-100 proteins are classified in the EF-hand protein family, and each subunit (10500 molecular weight) contains two EF-hand domains, denoted as the N- and C-terminal domains. The Ca²⁺ affinity of the C-terminal domain ($K_{dCa} = 20-50 \,\mu\text{M}$) is greater than that of the N-terminal one ($K_{dCa} = 200-500 \,\mu\text{M}$).⁴⁻⁶ In addition, the S-100 proteins can bind Zn²⁺, Mg²⁺, and K⁺.^{3,7} The binding sites of Zn²⁺ have been found to be the histidine (His) residues, being unique from other cation-binding sites.⁸

It is known that the binding of Ca²⁺ to bovine brain S-100 proteins significantly enhances the reactivity of the cysteine (Cys) residues in the S-100 proteins to a thiol-specific reagent, 5,5'-dithiobis(2-nitrobenzoic acid) (DTNB).^{3,9} This effect is due to the shift of Cys-85 in the α -subunit and Cys-84 in the β -subunit to the aqueous medium caused by Ca²⁺-binding. 3,9-11 It has also been reported that the binding of Zn²⁺ to the S-100 proteins hardly affects the reactivity of the Cysresidues toward DTNB.^{3,9} Based on the results obtained using thiol-specific fluorescent probes, Baudier and Cole showed that the binding of Zn²⁺ to S-100b caused a shift of Cys-84 to a more hydrophobic environment.^{9,11} It has been found that the binding of Mg^{2+} to the S-100 proteins moderately enhances the reactivity of the Cys-residues toward DTNB.¹² The binding of K⁺ to the S-100 proteins showed no effect on the reactivity of the Cys-residues toward DTNB in a manner similar to the Zn²⁺-binding.¹³ The effects of both the Mg²⁺-binding and K⁺-binding to the S-100 proteins on the hydrophobic environment around the Cys-residues have not been investigated.


In the present study, the hydrophobic environment of the Cys-residues in the S-100 proteins caused by the K⁺-binding


or Mg²⁺-binding was investigated by fluorescence measurements. A thiol-specific probe, N-(1-anilinonaphthyl-4)maleimide (ANM), was used for this purpose.14 The content of the ANM-labeled Cys-residues in S-100a.a' and S-100b was estimated to be about 1.5 and 0.9 per mol of protein using DTNB.¹³ These values are somewhat less than the number of Cys-residues that reacted with DTNB in Ca2+/S100a,a' and Ca²⁺/S-100b, ^{12,13} suggesting the validity of the labeling of Cys-84 in the β -subunit and Cys-85 in the α -subunit. The effects of the K⁺-, Mg²⁺-, Ca²⁺-, and Zn²⁺-bindings to pig brain S-100 proteins on the emission spectrum were compared with those to bovine brain S-100 proteins regarding the reactivity of the Cys-residues toward DTNB. Further, the effects of Li⁺-, Na⁺-, Sr²⁺-, and Ba²⁺-bindings to pig brain S-100a.a' on the spectrum were also investigated because these cations have properties similar to those of K⁺, Ca²⁺, and Mg²⁺.

Figures 1a and 1b show the emission spectra of ANMlabeled S-100a.a' and S-100b. The relative intensities and the wavelengths of their emission peaks are summarized in Table 1. The binding of Ca²⁺ to S-100a.a' decreased the fluorescence intensity along with a red shift in the emission peak from 428 to 448 nm. This shift can be regarded as resulting from the shift of Cys-85 in the α -subunit and Cys-84 in the β -subunit to the more aqueous environment.^{3,9,11} The binding of K⁺ to S-100a.a' showed a 50% decreased red shift in the emission peak compared to the shift obtained by the binding of Ca²⁺ to S-100a.a'. The conformation change around those Cys-residues caused by the K⁺-binding appears to be slighter than that caused by the Ca²⁺-binding. The binding of Mg²⁺ to S-100a.a' produced a slighter red shift in the emission peak (Table 1). This suggests that the conformation change around these Cys-residues caused by the binding of Mg²⁺ to S-100a.a' is slight. In contrast with the binding of Ca²⁺, K⁺, and Mg²⁺, the binding of Zn²⁺ to S-100a.a' enhanced the fluorescence intensity in the emission peak by 37% without a peak shift. This indicates that the Cys-residues moved to the more hydrophobic environment.

The binding of Ca^{2+} , K^+ , and Mg^{2+} to S-100b produced the same qualitative phenomenon as those to S-100a.a'. The emission peak of the Ca^{2+}/S -100b, K^+/S -100b, and Mg^{2+}/S -100b shifted slightly more than those of the S-100a.a' complexes, reflecting the difference in the tertiary structure between S-100a.a' and S-100b. The binding of Zn^{2+} to S-100b showed an obvious blue shift in the emission peak from 425 to 422 nm, indicating the shift of Cys-84 to the more hydrophobic environment. It has been confirmed that the binding of Zn^{2+} to S-100b plays an important role in the structure formation. 11,15

Figure 1c shows the emission spectra of ANM-labeled S-100a.a' in the presence of alkali and alkaline earth metal ions. Three results were obtained. The first is that the binding of Ba²⁺, Sr²⁺, and Ca²⁺ to S-100a.a' showed an apparent red shift in the emission peak accompanying a decrease in the fluorescence intensity in this order. The second is that those changes caused by Ba²⁺-binding, Sr²⁺-binding, and Ca²⁺-binding are more definitive than that caused by Mg²⁺-binding to S-100a.a' (Figs. 1a and 1c). The hydrophobic environment around the Cys-residues in Mg²⁺/S-100a.a' seems to be different from those in Ba²⁺/S-100a.a', Sr²⁺/S-100a.a', and Ca²⁺/S-100a.a'. The third is that the wavelength of the emission

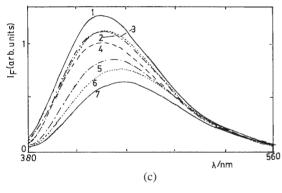


Fig. 1. The fluorescence spectra of ANM-labeled S-100a.a' (a, c) and S-100b (b). In Figs. 1a and 1b, lines 1, 2, 3, 4, and 5 are the spectra of Zn^{2+}/S -100, S-100, Mg^{2+}/S -100, K^+/S -100, and Ca^{2+}/S -100, respectively. In Fig. 1c, lines 1, 2, 3, 4, 5, 6, and 7 show the spectra of Mg^{2+}/S -100a.a', K^+/S -100a.a', Na^+/S -100a.a', Li^+/S -100a.a', Ba^{2+}/S -100a.a', Sr^{2+}/S -100a.a', and Ca^{2+}/S -100a.a', respectively. The protein concentration was $10\,\mu M$. The measurements were performed at $25\,^{\circ}C$. The sample solution was excited with 355-nm (10-nm bandwidth) radiation.

peak of Li⁺/S-100a.a', Na⁺/S-100a.a', and K⁺/S-100a.a' was quite the same. The emission spectra of Na⁺/S-100a.a' nearly overlapped that of K⁺/S-100a.a'. The hydrophobic environment around the Cys-residues in these S-100 complexes should be quite similar.

The effects of the binding of metal cations on the environ-

Table 1. Wavelengths and Fluorescence Intensities at the Emission Peak of the S-100 Complexes

Condition	S-100a.a'		S-100b	
	$\lambda_{\rm max}/{\rm nm}$	$I_{ m F}$	$\lambda_{\rm max}/{\rm nm}$	$I_{ m F}$
GEDTA	428	1.26	425	1.23
Zn^{2+}	428	1.73	422	1.81
Mg^{2+}	433	1.23	428	1.06
K^{+}	438	0.88	428	0.96
Ca^{2+}	448	0.61	431	0.58

ment around the Cys-residues are classified into four group; Zn²⁺, alkali cations, Mg²⁺, and other alkaline earth metal cations. This was confirmed by the absorption difference spectrum measurements (Fig. 2). Sr²⁺-binding to S-100a.a' showed a negative difference absorption spectrum, in which the shape is substantially the same as that of the difference absorption spectrum caused by Ca²⁺-binding. The molar coefficient of the former was about 40% of the latter. The conformation change in S-100a.a' caused by Sr²⁺-binding seems to be a degenerated form of that caused by Ca²⁺-binding. This probably relates to the environment around the Cys-84, Cys-85 residues in S-100a.a'. The binding of Ba²⁺ to S-100a.a' also showed a similar difference absorption spectrum to that caused by Ca²⁺binding except for the lack of a negative peak at 293 nm; the shift of the tryptophan (Trp)-90 residue in the α -subunit is probably slight. On the contrary, Mg²⁺-binding to S-100a.a' showed a very broad difference absorption spectrum without any peak.

The binding of Li⁺, Na⁺, and K⁺ to S-100a.a' showed positive difference absorption spectra, which are mutually similar (Figs. 2e, 2f, and 2g). The binding of K⁺ to S-100a.a' showed an apparent positive peak at 294 nm. This suggests that K⁺-binding to S-100a.a' causes a shift of the Trp-90 residue to a more hydrophobic medium. Although the binding of Zn²⁺ to S-100a.a' showed a negative difference absorption spectrum with several peaks, the shape of the spectrum differed from any of those caused by Ca²⁺, Sr²⁺, and Ba²⁺-binding. The results obtained from the difference absorption spectrum measurements were consistent with those obtained from the ANM fluorescence spectroscopic measurements.

In summary, the hydrophobicity around the Cys-residues in S-100a.a' and S-100b is as follows: $Ca^{2+}/S-100 < K^{+}/$ $S-100 < Mg^{2+}/S-100 < S-100 < Zn^{2+}/S-100$. On the other hand, the order of the reactivity of their Cys-residues toward DTNB has been reported to be as follows: S-100, K⁺/S-100, and $Zn^{2+}/S-100 \ll Mg^{2+}/S-100 \ll Ca^{2+}/S-100.^{9,12,13}$ The hydrophobicity around the Cys-residues in S-100a.a' cannot account for the reactivity of their Cys-residues toward DTNB. The comparison of the former with the latter must be performed in a homologus series, Ba²⁺/S-100a.a', Sr²⁺/S-100a.a', and Ca²⁺/S-100a.a'. The binding of Mg²⁺ to S-100a.a', which causes a shift of more of the Cys-residues to the aqueous medium, differs fundamentally from the binding of Ca²⁺ to S-100a.a'. Although the rate constant of the Cys-residues in S-100a.a' toward DTNB was little affected by the K⁺-binding, the hydrophobicity of the Cys-residues in S-100a.a' was decreased slightly by the K+-binding. In order to obtain a definitive structural characterization around the Cys-residues in

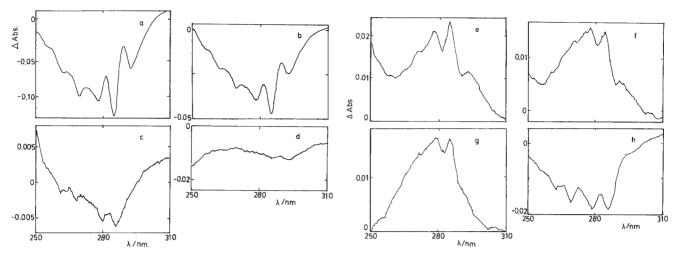


Fig. 2. The difference absorption spectra of S-100a.a' complexes. In Fig. 2, a, b, c, d, e, f, g, and h show the difference absorption spectra of S-100a.a' caused by Ca^{2+} -binding, Sr^{2+} -binding, Ba^{2+} -binding, Mg^{2+} -binding, K^+ -binding, Na^+ -binding, Li^+ -binding, and Zn^{2+} -binding, respectively.

Mg²⁺/S-100a.a', K⁺/S-100a.a', and Ca²⁺/S-100a.a', the use of high-resolution NMR techniques will be needed.

Experimental

Materials. S-100a.a' and S-100b were prepared from pig brain as described in a previous paper. ¹⁶ ANM and ethylenedioxybis(ethylamine)-*N*,*N*,*N'*,*N'*-tetraacetic acid (EGTA) were purchased from Kanto Chemical Co., Inc.

Modification of Cys-Residues. After completely removing 2-mercaptoethanol by dialysis against 20 mM Tris-HCl (pH 7.15), the Cys-residues in the 150 μ M S-100a.a' and S-100b were reacted with 300 μ M ANM for 1 h at 0 °C. The addition was 1 mM CaCl₂. The reaction was terminated by the addition of 3 mM 2-mercaptoethanol to ANM. ¹⁴ After the 2-mercaptoethanol was completely removed by dialysis, the sample solution was filtered using a 0.2- μ m Millipore filter.

Fluorescence Spectroscopy. The fluorescence measurements were carried out using a Shimadzu RF-1500 spectrophotometer at 25 °C. The ANM fluorescence measurements were performed by excitation with 355-nm radiation (10-nm bandwidth). The scanning wavelength region was 380 to 560 nm (10-nm bandwidth). The experimental medium was a mixture of 10 μM S-100, 20 mM Tris-HCl (pH 7.15), and additives. The additives included 0.1 mM EGTA, 0.1 mM ZnCl₂, 10 mM MgCl₂, 0.1 M KCl, 1 mM CaCl₂, 1 mM SrCl₂, 1 mM BaCl₂, 0.1 M NaCl, and 0.1 M LiCl.

Difference Spectrum. The difference absorption spectra were measured at 25 °C using a recording spectrophotometer (Shimadzu UV-3100S). The difference spectrum of $Ca^{2+}/S-100a.a'$ vs. S-100a.a', $Sr^{2+}/S-100a.a'$ vs. S-100a.a', $Ba^{2+}/S-100a.a'$ vs. S-100a.a' were obtained with $100\,\mu\text{M}$ of S-100a.a' in the presence of Ca^{2+} at 1 mM, Ca^{2+} at 1 mM, Ca^{2+} at 1 mM, and Ca^{2+} at 1 mM. Those of

 K^+/S -100a.a' vs. S-100a.a', Na^+/S -100a.a' vs. S-100a.a', Li^+/S -100a.a' vs. S-100a.a', Zn^{2+}/S -100a.a' vs. S-100a.a' were obtained in the presence of K^+ at 0.1 M, Na^+ at 0.1 M, Li^+ at 0.1 M, and Zn^{2+} at 0.4 mM, respectively.

References

- 1 T. Isobe, T. Nakajima, T. Okuyama, *Biochem. Biophys. Acta* 1997, 494, 222.
 - 2 T. Isobe, T. Okuyama, Eur. J. Biochem. 1981, 116, 79.
 - 3 J. Baudier, D. Gerard, *Biochemistry* **1983**, 22, 3360.
- 4 R. S. Mani, B. E. Boyes, C. M. Kay, *Biochemistry* **1982**, 21, 2607.
- 5 J. K. Harley, M. F. Fillat, C. Gömez-Moreno, G. Tollin, *Biochimie* **1995**, *77*, 539.
- 6 J. Baudier, N. Glasser, D. Gerard, J. Biol. Chem. 1986, 261, 8192.
- 7 Y. Ogoma, H. Kobayashi, T. Fujii, Y. Kondo, A. Hachimori, T. Shimizu, M. Hatano, *Int. J. Biol. Macromol.* **1992**, *14*, 279.
- 8 P. T. Wilder, K. M. Varney, M. B. Weiss, R. S. Gitti, D. J. Weber, *Biochemistry* **2005**, *44*, 5690.
 - 9 J. Baudier, R. D. Cole, *Biochemistry* **1988**, 27, 2728.
 - 10 R. Donato, Int. J. Biochem. Cell Biol. 2001, 33, 637.
- 11 C. W. Heizmann, G. Fritz, B. W. Schäfer, *Front. Biosci.* **2002**, *7*, 1356.
 - 12 S. Matsuda, Bull. Chem. Soc. Jpn. 2002, 75, 2503.
 - 13 S. Matsuda, Bull. Chem. Soc. Jpn. 2005, 78, 1487.
 - 14 Y. Okamoto, T. Sekine, J. Biochem. 1980, 87, 167.
 - 15 S. Matsuda, Bull. Chem. Soc. Jpn. 2001, 74, 1083.
 - 16 S. Matsuda, Bull. Chem. Soc. Jpn. 1994, 67, 888.